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Abstract

We perform in this paper a multi-objective design optimization concerning the blade shape of a heat exchanger, considering the cou-
pled solution of the flow/heat transfer processes. For this, a genetic algorithm is used. The aim of the procedure is to find the geometry
most favorable to simultaneously maximize heat exchange while obtaining a minimum pressure loss. An in-house computer package,
called OPAL, performs the optimization process in a fully automatic manner. It calls the pre-processor to generate the computational
geometry as well as the mesh, it then performs the numerical simulation of the coupled fluid flow/heat transfer problem using Fluent,
calculates the output parameters, and iterates the procedure. The genetic algorithm relies on a relatively large number of simulations,
which may result in a considerable computational effort, depending on the configuration. The procedure can thus be performed in par-
allel on a Linux PC cluster to reduce user waiting time. A nearly optimal speed-up is obtained for the present configuration.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Designing optimal shapes for practical engineering
applications has been the subject of numerous publications
during the last decade [1–4]. Many methods can be found
in the literature for optimization problems, based on differ-
ent strategies, most of the time developed for a specific
class of models. In this project, we consider specifically
multi-objective optimization problems, since it covers many
interesting application fields. As a matter of fact, most of
the time, engineers responsible for the design of industrial
devices have to face problems with more than one objective
to fulfill at the same time. Moreover, the objectives of the
optimization process are often concurrent (a simple exam-
ple being the quality/price trade-off).
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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Thus, the aim of the present study is to develop and test
numerical tools that can be used to solve multi-objective
problems, involving complex flow simulations and using
computational fluid dynamics (CFD) codes for practical
industrial configurations, while keeping reasonable overall
computing times.

Optimization involving CFD computations is an inten-
sive field of research. In aerodynamics an optimal shape
geometry is often needed. Thus, the design of an airfoil
shape was for example optimized in [1,2]. The wall shapes
of incompressible diffusers have been investigated by CFD
and optimized in [5]. Han and Maeng [3] have presented a
shape optimization of cut-off in a multi-blade fan/scroll
system analyzed using two-dimensional CFD.

In the same way, heat transfer problems often involve
optimization. Heat exchange through smooth and corru-
gated walls has been investigated in [6]. Shape design of a
cylinder with heat transfer was carried out in [7]. The opti-
mal shapes of fins and pins inside heat exchangers are
examined by various authors [4,8–11]. Tiwari et al. [12]
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Nomenclature

H inter-blade channel width (mm)
N number of individuals
P pressure (Pa)
T temperature (K)
v velocity (m/s)
x spatial coordinate (m)
y spatial coordinate (m)

Greek symbol

D difference

Subscripts

inlet inlet
obj objectives
param parameters
proc processors
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have studied different angles of attack for the delta winglets
mounted on the fin-surface on top of oval-shaped tubes.
Heat transfer of finned and non-finned circular and elliptic
tubular arrangements are investigated numerically in [13]
to maximize the total heat transfer rate. The flow through
a heated pipe with an inserted twisted tape was examined in
[14] for different slopes. This analysis is based on the
entropy production minimization [15]. Multi-parameter
optimization coupled with CFD was investigated in [16]
to maximize the performance of a heat sink. Okabe et al.
[17] have obtained optimal results for a micro-heat-exchan-
ger based on different multi-objective optimization meth-
ods. As a whole, optimization of configurations involving
the coupled simulation of flow and heat transfer remains
a fairly new field of research.

Classical optimization techniques, like gradient-based
methods are known for their lack of robustness and for
their tendency to fall into local optima. Generic and robust
search methods, such as Genetic Algorithms (GA) [18,19],
offer several attractive features and have been used widely
for design shape optimization [20–24]. They can in partic-
ular be used for multi-objective multi-parameter problems.
They have been successfully tested in many practical cases,
for example for design shape optimization in aerodynamics
[1,2,21–23], automotive industry [25]. The basic idea asso-
ciated with the GA approach is to search for optimal solu-
tions using an analogy to evolutionary theory. During the
iteration (or ‘‘evolution’’ using GA terminology) proce-
dure, the decision variables or genes are manipulated using
various operators (crossover, mutation, . . .) to create new
design populations, i.e., new sets of decision variables.
The use of a fully automatic Genetic Algorithm coupled
with CFD for a multi-objective heat transfer problem still
remains limited by the computing time, and is up to now
far from being a practical tool for engineering applications.

The purpose of this paper is to illustrate a possible meth-
odology for the fully automatic optimization of a heat
exchanger. We are neither interested here in developing a
new algorithm for optimization nor to discover a com-
pletely new heat exchanger structure. We solely wish to
demonstrate that it is possible to reach an optimal geomet-
rical configuration for a case involving coupled fluid flow
and heat transfer phenomena, investigated using CFD with
a reasonable computing time, for configurations very close
to practical ones. In a first step, we consider laminar flows,
because it corresponds to a realistic engineering problem,
for example for low-power systems. Therefore, we choose
a model problem, consisting of a tube bank heat exchanger.
The problem is to optimize the shape of the blades so that
the heat exchange is maximal while keeping a minimal
pressure loss. A set of automatized numerical tools are
used together to solve this problem, involving mesh gener-
ation, CFD, an in-house C++ implementation of Genetic
Algorithms, a shell-script and complementary C programs
for automatization and parallelization.

In what follows, the model problem is introduced first,
putting into evidence the requirements for the choice of
an adequate optimization strategy. The used multi-objec-
tive genetic algorithm, based on the concept of Pareto
dominance, is then described. The practical computational
methodology for mesh generation, CFD solution and par-
allelization is presented afterwards. Results are then shown
and discussed, followed by concluding remarks.

2. Problem description

2.1. Tube bank heat exchanger

As an example of what can be done by coupling parallel
Genetic Algorithms and CFD codes, a two-dimensional
model of a tube bank heat exchanger is considered here.
The simulated staggered configuration is shown in Fig. 1.
Air enters the domain at Tinlet = 293 K and is warmed up
by passing through the blades in which a warm fluid flows
in the corresponding practical application. The blades are
supposed to have a constant outer wall temperature,
Twall = 353 K. The outlet is at atmospheric pressure.

The optimization problem consists of finding the best
geometry of the blades to increase heat exchange while at
the same time to limit the pressure loss. The two corre-
sponding numerical parameters to optimize are the average
temperature difference DT and pressure difference DP.
These two objectives are obviously inter-related. If the
exchange surface increases, the heat exchange will be
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Fig. 1. Schematic description of the tube bank heat exchanger configuration considered in this work.
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favored and the temperature difference between inflow and
outflow will be also enhanced. But, simultaneously, for a
given air flow rate the pressure loss will increase, and the
heat exchanger looses efficiency. In this first examination
the hydraulic resistance inside the tubes and the pumping
power are not considered, but it would be an interesting
subject for future investigations.

The domain bounded by a black line in Fig. 1 is simu-
lated in this study. The Reynolds number is equal to 170
defined using the inter-blade channel width H = 5 mm
and the uniform velocity at the inlet, vinlet = 0.5 m/s. The
length of the domain has been chosen to prevent any influ-
ence of the inflow or outflow boundary conditions on the
inter-blade flow. Corresponding tests have in particular
demonstrated the importance of extending the computa-
tional domain well beyond the last blade in order to avoid
the influence of the boundary conditions. The full extent of
the numerical domain can be seen in Fig. 2.

In this configuration, the flow is laminar, which corre-
sponds to practical low-power applications. Computing
the flow as a steady two-dimensional flow is in this case a
very acceptable approximation of the true physics, as the
blade length in the z direction is very large compared to
its width.
2.2. Problem parameters

For the different simulations, the boundary and inlet
conditions are the same, only the computational geometries
differ. The outer dimensions of the computational domain
as well as the blade positions along the domain boundaries
are fixed and only the shape of the blades inside the com-
putational region is varied. The forms of all four blades
are always changed simultaneously, so that they are identi-
cal in every individual computation. Their geometrical
shape is prescribed using four parameters, as presented in
Section 4.2.1. Since all other properties and boundary con-
Fig. 2. Typical com
ditions are constant, these four parameters are the only
input parameters of the optimization algorithm. After
defining the computational geometry and obtaining a
corresponding mesh, the numerical simulation can be per-
formed. In this study, we use the commercial computa-
tional fluid dynamics program Fluent 6.1 [26] to solve the
governing equations of the fluid flow phenomena including
the energy equation. The two-dimensional fields of pressure
and temperature are obtained in this way, and provide the
two objective parameters, the temperature and pressure
differences: DT, DP.

Genetic algorithms require a large number of simula-
tions, leading to a high computational effort, because they
operate on the entire allowed design space. Due to the fact
that the objective values associated with each set of design
parameters can be evaluated independently, a possibility to
speed-up the optimization for the user is to perform the
numerical simulations in parallel, using several processors,
as described later. In the following section, the optimiza-
tion method is explained first.

3. Genetic algorithms for multi-objective optimization

3.1. Multi-objective optimization

Mathematically speaking, a multi-objective problem
consists of optimizing (i.e. minimizing or maximizing) sev-
eral objectives simultaneously, with a number of inequality
or equality constraints. The problem can be formally writ-
ten as follows:

Find x¼ðxiÞ 8 i¼1;2; . . . ;N param such as

fiðxÞ is a minimumðrespectively maximumÞ 8 i¼1;2; . . . ;Nobj

subject to:

gjðxÞ ¼ 0 8j ¼ 1; 2; . . . ;M ; ð1Þ
hkðxÞ 6 0 8k ¼ 1; 2; . . . ;K; ð2Þ
putational grid.
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Fig. 3. Example for the rank of 10 individuals and the corresponding
probability (Eq. (4)) to participate in the reproduction process, repre-
sented on a circular diagram.
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where x is a vector containing the Nparam design parame-
ters, ðfiÞi¼1;...;Nobj

the objective functions and Nobj the num-
ber of objectives. In this study, only inequality constraints
are considered and are prescribed as bounded domains. In
other words, upper and lower limits are imposed on all
parameters:

xi 2 ½xi;min; xi;max�; i ¼ 1; . . . ;N obj. ð3Þ

The objective function ðfiðxÞÞi¼1;...;Nobj
returns a vector con-

taining the set of Nobj values associated with the elementary
objectives to be optimized simultaneously. In the current
case, four design parameters (Nparam = 4) and two objec-
tives (Nobj = 2) are considered.

A common practice to solve such a problem is to use a
trade-off between the objectives by linearly combining them
using some fixed weights prescribed by the user (see for
example [19,27]). The resulting single objective function is
optimized using either a classical gradient-based or simplex
method [28]. The first limitation of this kind of approach is
that the choice of the weights associated with each objec-
tive obviously changes the solution of the optimization
problem. A bad choice can lead to completely sub-optimal
results in comparison with the solution obtained by consid-
ering the inter-related objectives in an independent manner.
Moreover, this method does not allow to access all the set
of optimal solutions (see Section 3.2).

The GAs are semi-stochastic methods, based on an
analogy with Darwin’s laws of natural selection [18]. Each
configuration x is considered as an individual. The
parameters xi represent its genes. The main principle is to
consider a so-called population of N individuals, i.e. a set
of individuals covering the search domain, and to let it
evolve along generations (or iterations) so that the best
individuals survive and have offsprings, i.e. are taken
into account and allow to find better and better confi-
gurations.

The characteristics of the GA used in the present study
are based on the approach proposed by Fonseca and
Fleming [29]. The genes (sometimes called characters) of
the individuals (also called strings or chromosomes) are
the Nparam design parameters, encoded using a floating-
point representation [30]. The initial population is a set of
randomly chosen configurations in the domain defined by
the limits imposed on the parameters, Eq. (3). The creation
of a new generation from the previous one is performed by
applying genetic operators to the individuals of the present
generation, as described below. At each generation the indi-
viduals are classified as a function of their corresponding
objective values, leading to a rank within the population
and finally to a fitness. The definition of the rank for our
specific case is described later in Section 3.2. The probability
for an individual to participate in the reproduction process
is determined by a probability based on its fitness value,
linearly calculated from its rank in the classification. For
example, for individual number i in a group of N
individuals:
FitnessðiÞ ¼ N � rankðiÞ þ 1
P

jðN � rankðjÞ þ 1Þ ; ð4Þ

with index j varying from 1 to N.
Fig. 3 depicts a simple example showing for a group of

10 individuals the rank values and the corresponding prob-
ability to participate in the reproduction process, directly
based on its fitness. Using this technique individuals with
equal rank have an equal probability to reproduce. Individ-
uals associated with a higher fitness value have a better
chance to survive and to take part in the reproduction pro-
cess, as explained in Section 3.3. In this way better and bet-
ter generations are generated step by step. GAs operate on
the entire population. Thus, they offer a good potential to
explore the whole search space and to avoid local optima.
Their good robustness is mainly due to the fact that there is
no evaluation of the objective function’s derivatives. More-
over, the process can iterate further even if some evalua-
tions fail. The main drawback associated to evolutionary
algorithms in general remains their cost in terms of com-
puting (CPU) time. But, due to the fact that the evaluations
are performed independently, they are easily parallelizable,
as shown later.

3.2. The concept of Pareto dominance

In a multi-objective problem, the set of parameters (the
individuals in the GA terminology) can be compared
according to Pareto’s rule [29]: the individual A dominates
the individual B if, for at least one of the objectives, A is
strictly better adapted than B and if, for all other objec-
tives, A is not worse than B. An individual will be consid-
ered as optimal if it is non-dominated in the sense of this
rule. The rank is computed for each individual according
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Fig. 4. Principle of the Genetic Algorithms after selection showing
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genes, all of them are between 0 and 10.

Table 1
Parameters of the Genetic Algorithm

Parameter Value

Population size, N 30
Generations 20
Survival probability 0.5
Average probability 0.333
Crossover probability 0.167
Mutation probability 1.0
Mutation magnitude 30%a (i.e. ±15%)

a This value is multiplied by 0.8 at each generation. For example the
mutation magnitude is 4% (±2%) after 10 generations or 0.43% (±0.21%)
after 20 generations. Mutation magnitude must be decreased during the
optimization process to stabilize the population.
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to the number of individuals dominating him. If an individ-
ual is not dominated by any other individual, he gets the
top rank (of course, there may be several non-dominated
individuals at the same time). Then come all individuals
that are dominated by only one individual, and so on. This
is a true multi-objective approach because objectives are
considered as independent and there is no trade-off. An
individual i that is dominated by j individuals is given
rank(i) = 1 + j. Non-dominated individuals have rank 1,
so 1 6 rank(i) 6 N. At the end, the best individuals are
all the non-dominated individuals over all generations,
leading to the ‘‘computed’’ Pareto front, supposed to rep-
resent the real one. The use of this rule allows one to clas-
sify the individuals of the population and therefore to
calculate the corresponding fitness values, Eq. (4).

3.3. A genetic algorithm for multi-objective problems

Three groups are defined in the population, two for the
Genetic Algorithm generations and one for storing the
non-dominated configurations:

Elite: The currently non-dominated individuals.
Parents: Individuals that may reproduce.

Offspring: Individuals of next generation, built from
parents.

An individual can belong at the same time to several
groups. To generate an offspring, one or two parents are
selected using their fitness values. The selection of the
parents relies on the roulette-wheel method. Each
roulette-wheel slot receives a current individual from the
population. An individual with better fitness value is asso-
ciated with a larger roulette-wheel slot size (Fig. 3). A lar-
ger size of a roulette-wheel slot for a maximization problem
correspond to a better chance to survive or to reproduce
than the others. The new population is produced spinning
the roulette-wheel N times, where N represents the total
size of the population. This favors individuals with a higher
fitness, while leaving a chance for the worst individuals to
take part in the reproduction process, hence keeping diver-
sity through the generations. Individuals with an equal
rank get the same fitness value and have thus the same
probability to survive or to reproduce.

Once the parents have been selected with this method,
the offspring can be generated. The offsprings’ genes can
be computed using the values of the parents’ genes
(Fig. 4). To prescribe the properties of the offsprings, we
use randomly one of the three following methods, with
probabilities given in Table 1:

Survival: Only one individual is selected and the off-
spring will be the same as this parent without
any change.

Average: Two parents are chosen and the genes of the
offspring are the average of the genes of the
two parents.
Crossover: The crossover can be used to increase the diver-
sity among the population. In our problem, the
genes are the parameters of the blade profile
and these floating-point numbers are selected
from either one of the parents and mixed ran-
domly during the crossover process. In this
way, randomly selected genes from both par-
ents will be kept in the future generations by
being associated with the corresponding
offspring.

To introduce diversity, the offsprings further go through
a mutation step. A mutation operator is needed because
important genetic information may occasionally be lost
or missing. In the present case, mutation is a key search
operator for the domain exploration so that the mutation
probability must be close to 1. A mutation probability of
1 means that all individual genes obtained by averaging
or crossover will be modified by mutation. This mutation
is performed after defining the offsprings, to randomly
modify the offsprings’ genes. Fig. 4 represents a simple
example illustrating the procedure.

Multi-objective methods attempt to localize the Pareto
front, which is the set of all non-dominated configurations
according to the definition given above. Thus, the multi-
objective optimization problem aims at finding a discrete
approximation of the Pareto front (sometimes also denoted
Pareto Optimal Frontier, POF) which is the set of all



y

x

x1 2 x2,maxx1,max
x2,min

x
1,minx

y

min
y

max

y1

y2

Fig. 6. Basic blade shape described using four design parameters x1, x2, y1

and y2.

2572 R. Hilbert et al. / International Journal of Heat and Mass Transfer 49 (2006) 2567–2577
non-dominated parameters. As will be shown later, the
POF is clearly visible as soon as enough non-dominated
configurations have been identified and plotted.

All parameters of the GA procedure used in this work
are listed in Table 1. Parameters usually chosen in the liter-
ature as well as further parameter sets have been tested
extensively in previous works [31], showing that the values
retained in Table 1 are more appropriate for the problem
considered here.

4. Numerical solution

The set of coupled numerical tools used to solve the
multi-objective optimization problem are now described
and schematically shown in Fig. 5.

4.1. The OPAL (optimization algorithms) package

OPAL [31] is an object-oriented C++ code for Unix/
Linux systems, using a Tcl-script interpreter and optionally
a Tk-based [32] graphical user interface. A Tcl-script is
used for coupling OPAL with other computer codes, and
is used in our case to call a C interfacing program respon-
sible for the evaluation of the objective functions.

4.2. Evaluation of the objectives

In the present case, this evaluation relies on the commer-
cial software Gambit [33] for geometry and mesh genera-
tion, and Fluent [26] for solving the flow and energy
equations. Therefore, the evaluation of an individual set
of parameters requires four steps:

(1) the generation of the profile contour (blades) from
the design variables;

(2) the generation of an appropriate mesh for the
obtained geometry;

(3) the CFD simulation, i.e. the solution of the governing
coupled equations for the flow variable and the
energy on the mesh generated in the previous step;

(4) the post-processing of the obtained results to extract
the values of the objective functions for these specific
design variables.

Steps 1 and 2 are performed using the commercial
software Gambit 2.1 [33], step 3 using the CFD code
Fluent 6.1 [26] and step 4 takes place in the in-house inter-
facing code.
(Parameter values)

INPUT FILE FLUENT 6.1
output file

after post-processing)
(Objective values

OUTPUT FILE

C program on Linux for automatization

+GAMBIT 2.1
journal file

GAMBIT 2.1

FLUENT 6.1

Fig. 5. Flow chart showing the numerical solution procedure.
4.2.1. Blade shape (step 1)

Two possible blade shapes are shown in Fig. 6. The
points (x1,min,ymin) and (x2,max,ymin) are always fixed.
The geometrical constraints are prescribed in terms of
lower and upper limits on the parameters presented in
Fig. 6.

The shape of the blade geometry is defined here using
non-uniform rational basic splines (NURBS) [34], where
four independent parameters describe half of the blade
shape. These four parameters correspond to the two-
dimensional Cartesian coordinates of two points, (x1,y1),
(x2,y2). These points together with the two fixed points at
the extremity completely and uniquely define the NURBS
curve in the x–y plane. NURBS-based curves of degree
n = 3 are proposed as a standard in the GAMBIT software
[33]. Such curves consist in a piecewise rational polynomial
function of degree n, wherein the numerator and denomi-
nator are both non-periodic B-splines of degree n. Natural
boundary conditions are applied at the endpoint vertices,
using the fact that the second derivative of the NURBS
curve is zero. The blade geometry, including its derivative,
is fully continuous between the points ]x1,min,x2,max[, but
no further constraints were added to request a differentia-
ble profile at the end points x1,min and x2,max, though this
would be of course possible. All shapes presented below
could nevertheless be machined without difficulty. A fur-
ther refinement with a finer description of the blade would
be possible using more such control points. Note however
that increasing the number of points will lead to a much
higher number of possible geometries. In that case, further
geometrical constraints will in general be necessary to allow
the optimizer to deal only with acceptable shapes, that can
really be machined at an acceptable cost considering exist-
ing techniques and materials.

4.2.2. Mesh generation (step 2)

After having defined the geometry, the mesh is produced
in an automatic manner using the commercial software
Gambit 2.1 [33]. This is easily done by modifying the jour-
nal file containing the important geometrical parameters as
variables. Knowing (x1,y1), (x2,y2) is sufficient to fully
define the geometry and therefore to generate the mesh in
an automatic manner and export it to fluent. The script
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checks that mesh generation has been successful before
going on with the CFD computation, which has always
been the case for this simple geometry but might pose a
problem for complex three-dimensional configurations. A
typical example of the resulting grid is shown in Fig. 2.
The basic blade shape is duplicated four times and the
internal fluid region is meshed using quadrilateral cell ele-
ments using the ‘‘pave’’ algorithm of Gambit. This
automatic mesh generation has worked in all the cases
without errors, non-feasible cases have not been found.
The computational nodes are uniformly spaced along the
boundaries. The typical number of computational cells in
a mesh lies between 4000 and 5000. A systematic grid-inde-
pendence study has been performed, as presented in the
next subsection.

4.2.3. CFD simulation (step 3)

The in-house interfacing code now starts Fluent [26] in
an automatic manner, using again a so-called journal file.
Only the geometry and the mesh change between two
CFD computations.

The inlet (left side in Fig. 7) boundary is considered as a
velocity inlet with imposed conditions for the velocity, set
to vinlet = 0.5 m/s, and the temperature Tinlet = 293 K. Wall
boundary conditions with a constant temperature
Twall = 353 K are prescribed on all four blade surfaces.
Symmetry conditions are applied in between the blades
on the top and bottom boundaries. On the right, a pressure
outlet condition relaxing to atmospheric pressure is
imposed.

The discretized governing equations are solved iteratively
in a segregated manner using a finite-volume description. To
improve the accuracy of second-order discretization is
systematically used for all variables, along with a double-
precision computation. The normalized residuals are com-
puted at every iteration by Fluent. As soon as all of these
residuals fall below a prescribed value, convergence is
reached. In our case the fixed prescribed value is 10�4 for
the flow equations and 10�6 for the temperature equation,
providing a sufficient accuracy for an acceptable CPU time.
This point has been checked for one of the solutions identi-
fied as optimal, by further decreasing these thresholds. A
Fig. 8. A typical CFD result, showing the obtained relative pressure field i

Fig. 7. A typical CFD result, showing the obtained temper
completely negligible influence has been observed for the
two objective variables.

In the same way, a systematic grid-independence study
has been carried out for this selected non-dominated case.
By refining several times the grid in a uniform manner the
relative pressure and temperature differences do not change
by more than 0.8% (0.0026 Pa) respectively 0.065%
(0.20 K), demonstrating that the initial grid is sufficient
to obtain quantitative estimations.

The velocity–pressure coupling is treated with the
standard SIMPLE pressure-correction method. In most
cases the convergence is achieved in 100–200 iteration
steps. If the convergence is not reached within 500 iteration
steps, the simulation is considered as not converging and is
fully dismissed. This has been observed for a few evalua-
tions, far from the POF.

4.2.4. Post-processing (step 4)

After convergence, the temperature difference between
the inlet (uniform constant value) and the averaged value
along the outlet is computed. The pressure difference
between the inlet and outlet averaged pressure values is
also computed. These two differences are the two objectives
of the optimization problem. The resulting temperature
and pressure fields of one of the optimum solutions are pre-
sented as an example in Figs. 7 and 8.

4.3. Parallelization

As mentioned above, an important issue related with
GAs is the high computational effort needed to perform
the necessary evaluations of the objectives associated with
the population. The evaluation of a large number of indi-
viduals for a large number of generations can lead to unaf-
fordable CPU times in practical engineering cases. On the
other hand, the GAs have the advantage to be easily and
efficiently parallelizable. At each generation, all N individ-
uals can be evaluated independently on different proces-
sors, since the central algorithm only needs the values of
the objectives to iterate. In the current case, the paralleliza-
tion has been implemented using the C interfacing program
(see Fig. 5) responsible for the evaluation of the Nobj = 2
n Pascal of one of the optimum solutions (same solution as in Fig. 7).

ature field in Kelvin of one of the optimum solutions.
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objective values associated with the N configurations. A
farmer/worker paradigm has been retained [18], using the
free MPICH implementation [35] of the message passing
interface (MPI) [36] C communication routines. All the
evaluations are carried out on a Linux PC cluster running
under Red Hat 9. Fig. 9 shows a schematic description of
this multi-processor optimization procedure.

Typical results leading to Pareto fronts can be extracted
from these calculations and are presented and discussed in
the next section.

5. Computational results

5.1. Pareto fronts

After several tests, 15 PCs were employed for the evalu-
ations and GA optimization was carried out using 30 indi-
viduals at every generation. The parents in the first
generation are generated using the quasi-random method
proposed by Sobol’ [37] and modified by Antonov and
Saleev [38]. The non-dominated individuals at each gener-
ation belong to the elite group. At each iteration 15 individ-
uals can survive for the next generation and 15 new
offsprings are added, 10 using averaging and five using
crossover, leading again to 30 individuals. Since there are
30 parents and only 15 survive for the next generation,
the 15 others disappear from the reproduction cycle but
are kept in the elite if they are non-dominated. Neverthe-
less, in this case, they cannot generate offsprings anymore.
If more than 15 non-dominated individuals exist in the
present population, the integration within the next genera-
tion is again based on the roulette-wheel method described
in Section 3.2.

The resulting temperature and pressure differences for
all points evaluated over 20 generations are plotted in
Fig. 10. Note that 3% of the points lie outside of the figure
limits and are not shown here for clarity reasons. The two
objectives, temperature and pressure difference, are plotted
on the x and y axes, respectively. The remaining points
already generate a clearly visible POF in the lower part
of the figure.

In Fig. 11 we illustrate again the concept of the Pareto
front, which is the boundary between infeasible configura-
tions and possible, but non-optimal solutions.
Six different optimal blade profiles obtained by the opti-
mization procedure are presented in Fig. 12. The flow
direction is from left to right. The first two figures corre-
spond to a low-pressure loss, but the average temperature
difference between the inlet and the outlet is small. Higher
temperature differences can be achieved using the blades
shown for example in Figs. 12(e) and (f), but in this case
the pressure losses increase. It is interesting to note
that the optimization procedure retains blades turned
towards the inflow as well as towards the outflow along
the POF.

5.2. GA parameters

The objective values obtained from the simulations are
shown as a function of the number of generations in
Fig. 13, in which only the non-dominated configurations
are represented. We observe that the POF can be recog-
nized very early, i.e. already after 2 or 3 generations.
Nevertheless, the quality increases with the number of gen-
erations and the POF becomes more accurate. There are
two reasons for this progressive improvement: first, we
have more and more individuals in the elite group. Sec-
ondly, OPAL favors individuals that are very different.
For example, if we have five non-dominated individuals
with the same fitness value in the parent’s group, with four
of them very close to each other and the last one quite dif-
ferent, this last individual will be favored for reproduction
to enhance diversity, which improves the spatial extension
of the POF.

5.3. Speed-up obtained through parallelization

In order to reduce the waiting time for the user, the pro-
cess has been parallelized and carried out on a multi-node



 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 20  21  22  23  24  25  26

ΔP
 [

Pa
]

ΔT [K]

Feasible but
non-optimal
solutions

Pareto front:
Set of optimal
solutions

Infeasible
configurations
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Fig. 12. Example of the resulting blade profiles for six individuals belonging to the POF. The flow direction is from left to right.
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Linux PC cluster with 15 worker PCs. Each node is a
2.6 GHz/2 GB-RAM Pentium-IV Linux PC. The commu-
nications are performed via a Fast Ethernet (1 Gb/s) net-
work connection. Table 2 shows the resulting CPU times
needed for the evaluation of 20 generations consisting of
30 individuals, performed with an increasing number of
processors on the PC cluster. The speed-up is defined here
as the ratio between the wall-clock time obtained when
using Nproc processors compared to the one needed with
a single processor. The theoretical optimal value of the
speed-up using Nproc processors is Nproc. In practical cases,
the communication times between processors reduce the
speed-up value below the theoretical maximum.

In the present case, the obtained parallel speed-up is
nearly optimal. This is not really a surprise, since the quan-
tity of information transferred between the so-called
farmer and workers is very small: four real parameters in
one direction, two in the reverse direction. The communi-
cation times are therefore almost negligible compared to
the CPU times required for the evaluation of the objectives
on each processor. Deviation from the optimal speed-up
are thus mainly due to boundary effects at the end of each
optimization iteration, when some worker PCs become
inactive for a short time, waiting for the next iteration to
start.

6. Summary

In this study, a genetic algorithm has been applied to a
multi-objective shape design optimization problem con-
cerning a heat exchanger configuration close to practical
applications. The characteristic Pareto front associated
with this problem has been obtained within a very reason-
able computational time.

This model problem is based on a description of the
blade geometry using only four parameters. This is clearly
a very simple description that could be refined. Computing
times can be further reduced by using parallelization on up
to 15 nodes if needed, as demonstrated in this paper. More
complex, practical industrial cases are solvable using on
one side appropriate modeling and simplification of the
problem and on the other side parallelization.
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Fig. 13. The non-dominated individuals (elite). (a) The non-dominated individuals after one generation. (b) The non-dominated individuals after two
generations. (c) The non-dominated individuals after three generations. (d) The non-dominated individuals after 20 generations.

Table 2
Speed-up obtained with the parallel optimization method

Number of processors Wall-clock time Speed-up

1 129 min 10 s 1
3 44 min 6 s 2.93
5 27 min 17 s 4.73
8 18 min 52 s 6.85
15 10 min 55 s 11.83
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Further investigations are presently conducted to
decrease the needed CPU time even further and therefore
to have easily access to more realistic configurations,
described with more refined models using a higher number
of parameters. Two possible improvements are currently
tested. On one side, speed-up can be achieved in the optimi-
zation algorithm itself. For example, some results (see e.g.
[39,40]) indicate that the hybridizing of the GA with classical
gradient-like methods is an interesting way to follow. On the
other side, new methods can be used for the evaluation of the
objective values, such as the coupling of the GA with an arti-
ficial neural network [3,41] or the application of statistical
methods such as those based on the response surface
concept.
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